
Experiment 1: Introduction to PC-based

Data Acquisition and Real-Time Control

Tools/concepts emphasized: MATLAB, Simulink, Real-Time Workshop (RTW), QuaRC,

Q4, data acquisition, and real-time control.

1. Introduction

All real-world applications of feedback control involve:

i) mathematical modeling of physical plants;

ii) system/parameter identification;

iii) feedback control design;

iv) off-line computer simulation to evaluate closed-loop system performance;

v) real-time feedback control implementation using analog/digital hardware; and

vi) on-line controller adjustment to optimize closed-loop system performance.

You have been familiarized with steps i), iii), and iv) in Automatic Control–ME 3413. In the

Automatic Control Laboratory–ME 3411, we will reiterate some aspects of steps i), iii), and iv), as

required; however, our primary focus will be on steps ii), v), and vi).

Traditionally, control systems have been designed and analyzed using analog methods such as

the Laplace transform. In addition, until 1960’s, a vast majority of industrial control systems

were implemented using analog technology based on mechanics (e.g., moving bars, linkages, etc.),

pneumatics, and electronics (e.g., resistors, capacitors, op-amps, etc.). However, with the advent

of digital computer technology, control engineering has witnessed a significant shift towards digi-

tal implementation of feedback controllers [1]. In contrast to analog implementation of feedback

control, digital implementation offers small size and low cost. Furthermore, digital controllers are

inherently flexible since they can be changed by reprogramming, whereas analog controllers are

changed by extensive rewiring [1].

In many current industrial and commercial applications of feedback control such as machine

tools, robotics, automotive system, etc., microcontrollers are extensively used. Microcontrollers are
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typically programmed either in low-level machine language or in high-level languages such as C via

PC interfaces. The programming of microcontrollers for implementing advanced control algorithms

is a specialized task and requires trained personnel. However, in the last decade, with the advent of

the fourth generation computer programming tools such as the computer-aided software engineering

(CASE), it has become feasible to automatically generate C code from graphical control-system

simulation tools such as Simulink. In particular, using the Simulink block library and RTW along

with vendor-specific block libraries, one can generate C code from Simulink-based feedback control

diagrams for real-time controller implementation on PC and DSP-based data acquisition and control

boards (DACBs).

In the first laboratory exercise, we will focus on gaining familiarity with the Q4 DACB [2]

and MATLAB, Simulink, RTW, and QuaRC [3] software. The Q4 DACB provides the following

functionalities: analog to digital conversion (ADC), digital to analog conversion (DAC), digital

I/O, and encoder readout. A Simulink compatible block library of Q4 functions is provided on

each laboratory PC. The QuaRC software provides a user friendly graphical user interface (GUI)

for implementing Simulink-based real-time control on the Q4 DACB. In addition, QuaRC can be

used to display real-time experimental data on PCs. In this experiment, students will learn the

basic functionalities of the Q4 DACB, QuaRC, and Simulink automated code generation features

by implementing a simple loop-back example.

2. Background

In this section, we provide a brief overview of the hardware and software environment to be

used throughout this laboratory course.

Q4 DACB: The Q4 is a general purpose DACB. It provides 4 single-ended ADCs, 4 DACs, 16

bits of digital inputs, 16 bits of digital outputs, 4 reconfigurable encoder counter/timers, and upto

4 encoder inputs. The Q4 DACB is accessed through the PC bus and is installed on an PCI bus

internal to the laboratory PC. The aforementioned functions of the Q4 DACB can be accessed via

an external terminal board.

MATLAB-Simulink-RTW: This is the preferred software environment for the control labo-

ratory. Students enrolled in this laboratory course were familiarized with the MATLAB software in

ME 3413. Simulink is a graphical control-system simulation program. The RTW toolbox enables
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automated C code generation from user-designed Simulink control-system diagrams.

QuaRC Library: This is a library of Quanser-supplied DACB drivers (e.g., Q4) compatible

with Simulink (See Figure 1). Some commonly used blocks of the Q4 library are HIL Read Analog

(ADC), HIL Write Analog (DAC), and HIL Read Encoder (See Figure 2).

Figure 1: QuaRC Library Block Library

Figure 2: Immediate I/O Block Library

QuaRC: The QuaRC program interfaces the Simulink generated C code with the Q4 board in

a seamless manner. The QuaRC program consists of two principal components, viz., QuaRC client

and QuaRC server. The QuaRC client is installed on the host computer with the Q4 DACB. The

QuaRC server may be installed on the host or the remote computer. The user designs a Simulink

control diagram and generates the C code on the remote computer. The C code from the remote
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computer is transferred to the host computer by the QuaRC server. The QuaRC client and host

computer’s processor communicate with the Q4 DACB for real-time data acquisition and control.

The QuaRC client also relays the real-time data to the QuaRC server for plotting purposes.

3. Objective

i) Gain familiarity with various functions of the Q4 board.

ii) Learn the laboratory software environment consisting of MATLAB, Simulink, RTW, QuaRC,

and QuaRC Library.

iii) Design and implement a simple loop-back control system.

4. Equipment List

i) PC with Q4 DACB and terminal board

ii) Software environment: Windows, MATLAB, Simulink, RTW, and QuaRC

iii) Set of leads

5. Experimental Procedure

In this experiment, we will design a controller that outputs a user specified voltage to a selected

DAC channel and measures the incoming voltage at a selected ADC channel.

i) Using the Q4 terminal board and a double-ended RCA connector, connect the channel 0

of DAC (analog output) to the channel 0 of ADC (analog input), as illustrated in Figure

3.

ii) From the Start button of the Windows toolbar, select the option sequence Programs–

MATLAB–R2007b–MATLAB R2007b to launch the MATLAB application.

iii) In the MATLAB window, choose “C:\ControlLab\Experiment1” from the Current Di-

rectory window. This directory path choice will change the directory from the default

MATLAB directory to the working directory for Experiment 1.
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Figure 3: Wiring Diagram for the Loop-Back Experiment

iv) In the MATLAB window, at the command prompt, type Simulink and hit the Enter key.

Next, in the MATLAB window, type quarc library and hit the Enter key. The preceding

two commands open the Simulink and the Q4 DACB drivers libraries, respectively.

v) From the Simulink tool bar, select File–Open to open “Template.mdl” file. The file

“Template.mdl” is a blank Simulink model. This file has been created with a set of

RTW options that enable C code generation for Visual C++, RTX (a real-time kernel

for Windows XP), and Q4 environment. You can determine the selected RTW-specific

parameters by following the option sequence Tools–RTW Options. Please do not

change any of the parameters while doing this.

vi) From the QuaRC Library, to access Immediate I/O block library as shown in Figure

3, select Data Acquisition–Generic–Immediate I/O by double clicking each block.

Then drag the icons labelled HIL Read Analog and HIL Write Analog into the blank

“Template.mdl” model file. The HIL Initialize block can be accessed by selecting Data

Acquisition–Generic–Configuration. In addition, from the Simulink block library,

under the icons Sources and Sinks, select and drag the icons labelled Constant, Scope,

and Display, respectively, into the “Template.mdl” model file. Using the copied icons,

complete a Simulink block-diagram as shown in Figure 4. Next, set the value of the con-

stant under the icon Constant to 1, to output 1 volt at the DAC. In addition, set the

channel numbers under the icons HIL Read Analog and HIL Write Analog to 0. Finally,
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save the completed Simulink control-system diagram as “Experiment1.mdl.”

Figure 4: Simulink Block Diagram for the Loop-Back Experiment

vii) From the toolbar of “Experiment1.mdl” file, select the option sequence QuaRC–Build to

link, compile, and generate the C++ code for the Simulink diagram. After the completion

of C++ code generation process, MATLAB window shows “Model Experiment1 has been

downloaded to target · · ·.”

viii) You can now perform the loop-back experiment. However, before proceeding, you must

request your laboratory teaching assistant to approve your electrical connections and your

Simulink control-system diagram.

ix) In the MATLAB window, click the black Start arrow button to acquire the real-time data

for the loop-back experiment. You can change the output voltage at the DAC by changing

the value of the constant in the Constant icon. Try experimenting, without exceeding the

constant value by 5 volts.

x) After sufficient experimentation, press the black Stop square button in the MATLAB

window to stop execution of your program on the Q4 DACB.

xi) Explore and document various menu options available in the QuaRC Server program.
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6. Analysis/Assignment

i) In step ix) of Section 5, what is the value of the scope variable, displayed in the Dispaly,

when you change the constant voltage applied at the DAC from 1 volt to 4 volt? Explain.

ii) Based on the loop-back experiment, develop a Simulink control-system diagram to run a

diagnostic test on the 4 DAC and 4 ADC channels available on the Q4 DACB.

iii) Briefly explain the principle of operation of ADC and DAC.

References
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Experiment 2: System Identification

and Control of an Electrical Network

Concepts emphasized: Passive filters, dynamic modeling, time-domain analysis, system type,

and integral control.

1. Introduction

Physical measurements using electro-mechanical sensors are commonly performed by engineers.

For example, a potentiometer can be used for position measurement of machine-bed traverse in

lathes, milling machines, etc. Similarly, a thermocouple can be used for temperature measurement

in process plants. Unfortunately, a vast majority of measurement sensors output spurious noise

signals corrupting the measured quantities [1]. Electrical networks are often designed to filter the

undesired noise from the sensor measurement. One such filter is the passive, low-pass R-C filter

shown in Figure 1 [1]. This laboratory exercise is designed to provide the students fundamental

principles of electrical network modeling, system identification, and closed-loop control. Specifically,

the first part of this laboratory experiment exposes the students to the powerful techniques of

ordinary differential equations and the Laplace transform for mathematical modeling of real-world

dynamical systems [2, 3]. Next, the students learn to analyze the system time response to determine

the unknown physical parameters of the system [2, 3]. Finally, the students design a feedback control

system to manipulate the system characteristic such that the closed-loop system response follows

a desired specification [2, 3].

Figure 1: An R-C Filter Network

2-1



2. Background

Resistor: The voltage-current law governing a linear resistor is given by [1, 3]

R =
V

i
, (2.1)

where i is the current flow through the resistor R when a voltage V is applied across the terminals

of R. A resistor element is conventionally drawn as shown in Figure 2. Units: V (Volt–V), i

(Ampere–Amp), R (Ohm–Ω = V
Amp).

Figure 2: Diagrammatic Representation of a Resistor Element

Capacitor: A capacitor is constructed by introducing a nonconducting medium within the

gap between two conductors. A capacitor can accumulate electric charge and can thus be used as

an energy storage device (analogous to a spring in a mechanical system). The mathematical law

governing the operation of a capacitor is given by [1, 3]

C =
q

V
, (2.2)

where q is the amount of electric charge stored in the capacitor when a voltage V is applied across

the terminals of C. Note that since

i =
dq

dt
, (2.3)

using (2.2), Eq. (2.3) yields

i = C
dV

dt
. (2.4)

A capacitor element is conventionally drawn as shown in Figure 3. Units: q (Coulomb), V (Volt–V),

C (Farad = Coulomb
V ).

2-2



Figure 3: Diagrammatic Representation of a Capacitor Element

Kirchhoff’s Current Law: The Kirchhoff’s Current Law (KCL) states that the algebraic

sum of all currents entering and leaving a node is zero [1, 3]. Thus, in Figure 4 at node A

i1 + i2 − i3 = 0, (2.5)

which can be rewritten as

i3 = i1 + i2. (2.6)

Figure 4: Current Flow at a Node

Step Response Analysis of a First-Order System: Consider the transfer function of a

first-order system given by

Y (s)
U(s)

=
α

s + β
. (2.7)

The step response of (2.7) can be obtained by computing the inverse Laplace transform of

Y (s) =
α

s + β
× A

s
, (2.8)
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where A
s is the Laplace transform of the step input of magnitude A applied at time t = 0. Next,

the inverse Laplace transform of (2.8) yields

y(t) =
Aα

β

[
1 − e−βt

]
. (2.9)

A typical unit step (A = 1) response plot for a first-order system is shown in Figure 5. Note that

(2.9) can be used to compute the steady-state response of (2.7) for the step input A. Alternatively,

the final value theorem can be applied to (2.8) to obtain the steady-state response of (2.7) for the

step input A [2, 3].
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Figure 5: Unit Step Response of 1
s+2

System Identification from Step Response: Consider the special case of (2.7) where α
β = D

and D is known. In this case (2.9) can be rewritten as

y(t) = DA
[
1 − e−βt

]
. (2.10)

The goal is to use (2.10) and the experimental step response data to determine the unknown system

parameter β. By simple algebraic manipulation of (2.10), we obtain

β = −1
t
× ln

[
DA − y(t)

DA

]
. (2.11)

Next, with the known D and the magnitude of the step input A and by selecting a specific time

instance t∗, within the transient response region, and the corresponding y(t∗) from the experimental

data, Eq. (2.11) can be used to determine β.
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3. Objective

i) Modeling of the passive R-C network shown in Figure 1.

ii) Open-loop step response analysis for system identification.

iii) Integral control design for zero steady-state error response.

4. Equipment List

i) PC with Q4 data acquisition card and terminal board

ii) Software environment: Windows, MATLAB, Simulink, RTW, and QuaRC

iii) Two resistors of 100 KΩ

iv) One capacitor of unknown capacitance value

v) Set of leads and a breadboard

5. Experimental Procedure

i) Using the breadboard, set of leads, 100 K Ω resistors, and the capacitor of unknown

capacitance, construct the electric network shown in Figure 6.

Figure 6: Wiring Diagram for the R-C Filter Network

ii) Start MATLAB using the procedure described in laboratory Experiment 1. In the MAT-

LAB window, choose “C:\ControlLab\Experiment2” from the Current Directory window.
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This directory path choice will change the directory from the default MATLAB directory

to the directory where all files needed to perform Experiment 2 are stored.

iii) From the File menu of the MATLAB window, select the option Open to load the Simulink

block-diagram “Experiment2a.mdl.” This will load the plot window shown in Figure 7

and the model file for Experiment 2a (open-loop) shown in Figure 8 will appear on your

desktop.

Figure 7: Plot Window for the Open-Loop Step Response of the R-C Network

iv) You can now perform an open-loop analysis of the electrical network shown in Figure

1. However, before proceeding, you must request your laboratory teaching assistant to

approve your electrical connections.

v) In the MATLAB window, click the black Start arrow button to acquire the open-loop

step response of the R-C electrical network. The experiment stops after 5 seconds.

vi) In the Simulink block-diagram, the To File block creates “Exp2AData.mat” which the

plot data is saved on. Plot the open-loop step response from the MATLAB window by

executing the following commands: load Exp2AData and plot(data2A(1,:),data2A(2,:)).

vii) Close the currently open plot windows and the Simulink diagram. From the File menu

of the MATALB window, select the option Open to load the Simulink block-diagram

“Experiment2b.mdl” shown in Figure 9 to your desktop. This will load the files for
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Figure 8: Simulink Block-Diagram for the Open-Loop Step Response of the R-C Network

experiment 2 (closed-loop) and a plot window similar to the one shown in Figure 7 will

appear on your desktop. Note that the feedback interconnection of the R-C circuit and

the Simulink controller in Figure 9 (ignoring the saturation block) can be represented as

shown in the closed-loop feedback diagram of Figure 10.

viii) In the MATLAB window, click the black Start arrow button to acquire the closed-loop

step response of the R-C electrical network. The experiment stops after 20 seconds.

ix) In the Simulink block-diagram, the To File block creates “Exp2BData.mat” which the

plot data is saved on. Plot the closed-loop step response from the MATLAB window by

executing the following commands: load Exp2BData and plot(data2B(1,:),data2B(2,:)).

6. Analysis

i) Obtain the differential equation governing the response of the R-C circuit shown in Figure

1. In addition, determine the transfer function that maps the input voltage VIN to the

output voltage VOUT; i.e., determine the transfer function VOUT(s)
VIN(s) .
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Figure 9: Simulink Block-Diagram for the Integral Control of the R-C Network

ii) Analyze the open-loop step response obtained in step vi) of Section 5 to a) determine

the unknown capacitance value for the capacitor and b) determine the steady-state error

for the applied step input. For part a), note that the terminal board of the Q4 data

acquisition card introduces a capacitor of 1 µF in parallel to the unknown capacitor C

in Figure 1. You must write a function .m file which accepts VIN, R, t, and VOUT(t), as

input arguments and returns the unknown capacitance value as the output.

Figure 10: Closed-Loop Feedback Diagram of the R-C Network with Integral Controller
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iii) Obtain the step response of the R-C network using Simulink. Compare the simulated

response with the actual response and comment.

iv) Analyze the closed-loop step response obtained in step ix) of Section 5 to determine the

steady-state error for the step input.

v) Design a proportional-plus-integral controller
(
Kp + Ki

s

)
so that the step response of the

closed-loop system has less than 5% overshoot and the settling time Ts ≤ 0.3 seconds.

Simulate the closed-loop system step response using Simulink.
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Experiment 3: Modeling, Identification,

and Control of a DC-Servomotor

Concepts emphasized: Dynamic modeling, time-domain analysis, system identification, and

position-plus-velocity feedback control.

1. Introduction

DC-motors that are used in feedback controlled devices are called DC-servomotors [1, 2, 3, 4].

Applications of DC-servomotors abound, e.g., in robotics, computer disk drives, printers, aircraft

flight control systems, machine tools, flexible manufacturing systems, automatic steering control,

etc. DC-motors are classified as armature controlled DC-motors and field controlled DC-motors [4].

This laboratory experiment will focus on the modeling, identification, and position control of an

armature controlled DC-servomotor. In particular, we will first develop the governing differential

equations and the Laplace domain transfer function model of an armature controlled DC-motor.

Next, we will focus on the identification of the unknown system parameters that appear in the

transfer function model of the DC-servomotor. Finally, we will develop and implement a position-

plus-velocity, also known as proportional-plus-derivative (PD), feedback controller to ensure that

the DC-motor angular position response tracks a step command.

2. Background

DC-motor modeling: A schematic representation of an armature controlled DC-motor is

given in Figure 1. For an armature controlled DC-motor, the field current if is constant and the

torque Tm generated at the DC-motor shaft is given by [2, 3, 4]

Tm = KTia, (2.1)

where KT is the given motor torque constant (N−m
Amp ) and ia is the armature current (Amp). Note

that for an armature controlled DC-motor, the back e.m.f. induced in the armature due to armature

rotation is directly proportional to the armature angular velocity ωm(t) 4
=

dθm
dt where θm(t) is the

angular position of the motor shaft. Thus, following [2, 3, 4]

Vb = Kb

dθm

dt
, (2.2)
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where Kb is a given motor constant (V −sec
rad ).

Figure 1: Armature Controlled DC-Motor

Next, note that the angular speed ωm(t) of an armature controlled DC-motor is controlled by

the armature voltage Va. The differential equation relating the armature current ia and the back

e.m.f. Vb to the armature voltage Va can be obtained by applying Kirchhoff’s Voltage Law (KVL)

[1, 4]. In particular, according to the KVL, at any given instant of time, the algebraic sum of

voltages around any loop in any electric network is zero. Thus, a direct application of the KVL to

the armature circuit yields

La

dia
dt

+ Raia + Vb = Va. (2.3)

Finally, we obtain the differential equation governing the motion of the mechanical load. First,

note that in most applications, the DC-servomotor shaft is connected to a gear-box of a given

gear-ratio Kg and the load is attached to the output shaft of the gear-box (e.g., see Figure 2). The

gear-ratio Kg is give by Kg
4
=

n`
nm

, where n` and nm are the number of teeth on the load-side and

the motor-side gears, respectively. It can be easily shown that the gear-ratio Kg relates the motor

shaft angular position θm to the gear-box output shaft angular position θ` by Kg = θm
θ`

. In addition,

it can be shown that the load inertia J` acting at the output shaft of the gear-box when reflected

at the motor shaft is given by 1
K2

g
J`. Thus, an application of Newton’s moment balance equation

at the motor output shaft yields

Jm

d2θm

dt2
+

1
K2

g

J`
d2θm

dt2
+

1
K2

g

bt

dθm

dt
= Tm,
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which can be rewritten as

Jeq

d2θ`

dt2
+ bt

dθ`

dt
= KgTm, (2.4)

where Jeq = K2
gJm + J` is the total load inertia reflected at the motor shaft and bt is the rotational

viscous friction constant.

Figure 2: DC-Motor Experiment Test-Bed

Now, taking the Laplace transform of (2.1) and (2.4) and after some algebraic manipulations

to eliminate the variables Tm, Vb, and ia , we obtain

θ`(s)
Va(s)

=
KgKT

s
(
LaJeqs2 + (Labt + RaJeq)s + Rabt + K2

gKTKb

) . (2.5)

In addition, the transfer function from input Va to output ω` is given by

ω`(s)
Va(s)

=
KgKT

LaJeqs2 + (Labt + RaJeq)s + Rabt + K2
gKTKb

. (2.6)

Now, assuming two real, simple roots of the characteristic equation of (2.6), viz., pe and pm, partial

fraction expansion of (2.6) yields

ω`(s)
Va(s)

=
Ke

s + pe

+
Km

s + pm

. (2.7)

Next, using the inverse Laplace transform, the forced response of the system (with zero initial

condition) to the input Va(t) is given by

ω`(t) =
∫ t

0

[
Kee−pe(t−q) + Kme−pm(t−q)

]
Va(q)dq. (2.8)

In most practical applications of armature controlled DC-motors, pe >> pm; i.e., the electrical

subsystem responds considerably faster than the mechanical subsystem. Hence, the first exponential
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term in (2.8) decays rapidly. Thus, the response ω`(t) in (2.8) is dominated by the mechanical

subsystem Km
s+pm

. For simplicity, in DC-servomotor control applications the influence of the electrical

subsystem component ( Ke
s+pe

) on the response ω`(t) in (2.8) is commonly neglected [2, 3, 4]. This can

alternatively be viewed as neglecting the armature inductance effect, La. This simplification yields

a first-order transfer function model which relates the DC-motor load angular velocity response ω`

to the armature voltage input Va, and is given by

ω`(s)
Va(s)

=
KgKT

RaJeqs + Rabt + K2
gKTKb

. (2.9)

Before proceeding, note that, it can be shown that in the SI-Units used for KT and Kb, the

numerical values of KT and Kb are identical [3]. Finally, the transfer function model of (2.9) can

be equivalently written as

ω`(s)
Va(s)

=
K

τs + 1
, (2.10)

where K and τ are the dc-gain and the mechanical time-constant of the DC servomotor, respectively.

3. Objective

i) Analysis of DC-motor sensor characteristics.

ii) DC-motor system identification.

iii) PD control of the DC-motor to achieve the desired angular position step response charac-

teristics.

4. Equipment List

i) PC with Q4 data acquisition card and terminal board

ii) Software environment: Windows, MATLAB, Simulink, RTW, and QuaRC

iii) SRV-02 DC-motor apparatus (See Figure 3) with potentiometer, optical encoder, and

tachometer

iv) Universal power module: UPM-1503

v) Set of leads
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Figure 3: SRV-02 DC-Motor Apparatus

5. Experimental Procedure

i) Using the set of leads, universal power module, SRV-02 DC-motor apparatus, and the

terminal board of the Q4 data acquisition card, complete the wiring diagram shown in

Figure 4.

ii) Start MATLAB. In the MATLAB window, choose “C:\ControlLab\Experiment3” from the

Current Directory window. This directory path choice will change the directory from the

default MATLAB directory to the directory where all files needed to perform Experiment

3 are stored.

iii) You can now perform various steps of the DC-motor identification and control experiment.

However, before proceeding, you must request your laboratory teaching assistant to che-

ck your electrical connections.

iv) From the File menu of the MATLAB window, select the option Open to load the Simulink

block-diagram “Experiment3 Pot.mdl.” shown in Figure 5 to your desktop. This will load
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Figure 4: Wiring Diagram for DC-Motor ID and Control

the files for determining the gain of the potentiometer Kpot ( radian
Volt

). The potentiometer

gain Kpot relates the potentiometer output voltage Vpot to the load angular displacement

θ` by θ` = KpotVpot.

a) In the MATLAB window, click the black Start arrow button to acquire the poten-

tiometer voltage response.

b) Rotate the load connected to the output shaft (center gear) until the potentiometer

voltage in the Display block shows 0 Volt. Please ensure that you get continuous

variation in the neighborhood of this 0 Volt reading. If you note a discontinuity in

the reading, turn the load by 180◦ and this will provide you close to 0 Volt reading.

Read the angular position θ◦0 of the load, corresponding to the 0 Volt potentiometer

reading, off the protractor marked on the SRV-02 apparatus.

c) Rotate the load to θ0 +90◦ and note the corresponding potentiometer voltage reading

in the Display block.

d) Rotate the load to θ0−90◦ and note the corresponding potentiometer voltage reading

in the Display block.
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Figure 5: Simulink Block-Diagram for Determining Potentiometer Gain

e) In the MATLAB window, click the black Stop square button when you finish collect-

ing the potentiometer voltage response data.

v) Close the currently open the Simulink diagram. From the File menu of the MATLAB win-

dow, select the option Open to load the Simulink block-diagram “Experiment3 Tach.mdl.”

shown in Figure 6 to your desktop. This will load the files for determining the gain of the

tachometer Ktach ( radian
second-Volt

) and a plot window. The tachometer gain Ktach relates the

tachometer output voltage Vtach to the load angular velocity ω` by ω` = KtachVtach.

a) In the MATLAB window, click the black Start arrow button. This applies a constant

1 Volt input to the DC-motor.

b) Measure the steady-state load angular speed and the corresponding steady-state

tachometer output voltage reading in the plot window. Hint: Find the time re-

quired for 20 complete revolutions of the load and the corresponding steady-state

tachometer output voltage reading at the end of 20 revolutions.

c) In the MATLAB window, click the black Stop square button when you finish collect-

ing the tachometer voltage response data.
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Figure 6: Simulink Block-Diagram for Determining Tachometer Gain

vi) Close the currently open plot windows and the Simulink diagram. From the File menu

of the MATLAB window, select the option Open to load the Simulink block-diagram

“Experiment3 DCID.mdl.” shown in Figure 7 to your desktop. In this diagram, the gain

Ktach must be supplied by you. Run this part of the experiment to acquire the transient

and steady-state angular velocity step response of the DC-motor under load.

vii) Close the currently open plot windows and the Simulink diagram. From the File menu

of the MATLAB window, select the option Open to load the Simulink block-diagram

“Experiment3 PDCont.mdl.” shown in Figure 8 to your desktop. In this diagram, the

gains Kpot and Ktach must be supplied by you. In addition, the gains KP and KD must

be designed and supplied by you. In particular, design a PD feedback controller so that

the DC-motor angular position step response exhibits a peak overshoot Mp ≤ 5% with

settling time Ts ≤ 1 second. The feedback diagram of the DC-motor with the PD feedback

controller is shown in Figure 9. The characteristic equation of the closed-loop system in

Figure 9 can be used for the purpose of finding KP and KD such that the desired perfor-

mance specifications are achieved. Before proceeding, you must request your laboratory
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Figure 7: Simulink Block-Diagram for DC-Servomotor System Identification

teaching assistant to approve your gain values. Run the experiment to record the angular

position step response of the DC-motor.

6. Analysis

i) Calculate Kpot and Ktach from the experimental data collected in steps iv) and v) of Section

5.

ii) Analyze the open-loop angular velocity step response obtained in step vi) of Section 5

to determine the dc-gain K and the mechanical time constant τ of the DC-servomotor

system.

iii) Obtain the angular velocity step response of the first-order system (2.10) with the param-

eters K and τ obtained in step ii) above. Compare the simulated angular velocity step

response with the experimental response obtained in step vi) of Section 5 and comment.
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Figure 8: Simulink Block-Diagram for DC-Servomotor PD Control

Figure 9: Closed-Loop Feedback Interconnection for PD Control of a DC-Motor

iv) Analyze the closed-loop angular position step response obtained in step vii) of Section 5

to determine if the performance specifications are satisfied. Comment on your results.

v) Design a proportional-integral-derivative (PID) controller so that the performance require-

ments specified in Section 5 are satisfied. Simulate the closed-loop angular position step

response with the PID controller. Compare with the experimental closed-loop angular

position step response obtained using the PD controller.
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Experiment 4: Modeling and Control

of a Magnetic Levitation System

Concepts emphasized: Dynamic modeling, time-domain analysis, PI and PID feedback con-

trol.

1. Introduction

Magnetic levitation is becoming widely applicable in magnetic bearings, high-speed ground

transportation, vibration isolation, etc., [1]. For example, magnetic bearings support radial and

thrust loads in rotating machinery. In addition, magnetic suspension generates levitation action in

rectilinear motion devices such as high-speed ground transportation systems. Magnetic levitation is

immensely beneficial in the aforementioned rotary and rectilinear devices as it yields a non-contact

support, without lubrication, thus eliminating friction. All practical magnetic levitation systems

are inherently open-loop unstable and rely on feedback control for producing the desired levitation

action.

The “maglev” experiment is a magnetic ball suspension system which is used to levitate a steel

ball in air by the electromagnetic force generated by an electromagnet. The maglev system consists

of an electromagnet, a ball rest, a ball position sensor, and a steel ball. The maglev system is

completely encased in a rectangular enclosure divided into three distinct vertical chambers. The

upper chamber houses an electromagnet such that one pole of the electromagnet is exposed to the

middle chamber and faces a black post erect in the middle chamber. The post is designed such that

with a 2.54cm steel ball at rest on its surface, the top of the ball surface is 14mm from the face of

the electromagnet. The middle chamber is illuminated using a light bulb. The ball elevation from

the top face of the post is measured using a sensor embedded in the post. The bottom chamber

houses sensor circuitry for signal conditioning.

The objective of the experiment is to design a controller that levitates the steel ball from the

post and makes it track a specified position trajectory. The maglev system can be decomposed

into two subsystems, viz., a mechanical subsystem and an electrical subsystem (current loop). The

ball position in the mechanical subsystem can be controlled by adjusting the current through the

electromagnet whereas the current through the electromagnet in the electrical subsystem can be

controlled by applying controlled voltage across the electromagnet terminals. Thus, the voltage
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applied across the electromagnet terminals provides an indirect control of the ball position.

In this laboratory exercise, we will first develop the governing differential equation and the

Laplace domain transfer function models of the electrical and mechanical subsystems. Next, we

will design and implement a proportional-integral (PI) controller to guarantee that the electrical

subsystem current response tracks the specified current command. Finally, we will design and im-

plement a proportional-integral-derivative (PID) controller to ensure that the mechanical subsystem

ball position response tracks the desired position command.

2. Background

Electrical Subsystem Modeling: A schematic representation of the maglev ideal electrical

subsystem is given in Figure 1. The electromagnet coil has an inductance L (Henry) and a resistance

R` (Ohm). The voltage V applied to the coil results in a current i governed by the differential

equation [3]

V = iR` + L
di

dt
. (2.1)

Figure 1: Ideal Electrical System

In order to determine the current in the coil, the mglev actual electrical subsystem (see Figure

2) is equipped with a resistor Rs in series with the coil such that the voltage Vs across Rs can be

measured using an analog to digital converter. Now, the voltage Vs measured across Rs can be

used to compute the current i in the coil. Note that with the sensing resistor Rs in the circuit the

governing differential equation for the coil current becomes

V = i (R` + Rs) + L
di

dt
. (2.2)
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Figure 2: Actual Electrical System

Finally, taking the Laplace transform of (2.2), we obtain

Ge (s) 4
=

I(s)
V (s)

=
1

Ls + (R` + Rs)
, (2.3)

where I(s) 4
= L[i(t)] and V (s) 4

= L[V (t)] and L is the Laplace operator.

Mechanical Subsystem Modeling: The force experienced by the ball under the influence of

electromagnet is given by [2, 3]

F = mg − Kf

(
i

x

)2

, (2.4)

where i is the current in electromagnet (Ampere), x is the distance of the ball from the electro-

magnet face (mm), g is the gravitational constant (mm
sec2 ), Kf is the magnetic force constant for the

electromagnet-ball pair, and m is the mass of the steel ball (Kg). Using Newton’s second law, we

now obtain the differential equation governing the ball position as

m
d2x

dt2
= mg − Kf

(
i

x

)2

. (2.5)

Note that using (2.5), we can compute the steady-state electromagnet coil current iss that

produces the desired steady-state constant ball position xss. Specifically, setting d2x
dt2

= 0 in (2.5)

yields

iss =
√

mg

Kf

xss. (2.6)

Now, theoretically one can use (2.6) to regulate the ball position. However, external disturbances,

system parameter uncertainty/variation, etc., necessitate a feedback controller to improve the me-

chanical subsystem performance.
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Next, defining a set of shifted variables

x̂(t) 4
= x(t) − xss, (2.7)

î(t) 4
= i(t) − iss, (2.8)

we can rewrite the dynamic equation (2.5), as

m
d2x̂

dt2
= mg − Kf

(
î + iss
x̂ + xss

)2

. (2.9)

Now, linearizing (2.9) about (x̂ = 0, î = 0), yields [3]

d2x̂

dt2
=

1
m


 ∂

∂x̂

(
mg − Kf

(̂i + iss)2

(x̂ + xss)2

)∣∣∣∣∣
(x̂=0,̂i=0)

x̂ +
∂

∂î

(
mg − Kf

(̂i + iss)2

(x̂ + xss)2

)∣∣∣∣∣
(x̂=0,̂i=0)

î


 , (2.10)

or, equivalently,

d2x̂

dt2
=

2Kfi
2
ss

x3
ssm

x̂ − 2Kfiss
x2

ssm
î. (2.11)

Finally, taking the Laplace transform of (2.11), we obtain

Gm (s) 4
=

X̂(s)
Î(s)

= − a

s2 − b
, (2.12)

where X̂(s) 4
= L[x̂(t)], Î(s) 4

= L[̂i(t)], and

a 4
=

2Kfiss
x2

ssm
, b 4

=

2Kfi
2
ss

x3
ssm

. (2.13)

The numerical values of the electrical and mechanical subsystem parameters for the laboratory

maglev model are provided in Table 1. In addition, the variables a and b in (2.13) are computed

with xss = 7mm and iss = 1 Amp.

3. Objective

i) PI control of the electrical subsystem to track a desired current.

ii) PID control of the mechanical subsystem to track a desired ball position.
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Physical quantity Symbol Numerical value Units
Coil inductance L 0.4125 Henry
Coil resistance R` 10 Ohm
Current sensor resistance Rs 1 Ohm

Force constant Kf 32654 mN-mm2

Amp2

Gravitational constant g 9810 mm
sec2

Ball mass m 0.068 Kg

Table 1: Numerical Values for Physical Parameters of The Maglev System

4. Equipment List

i) PC with Q4 data acquisition card and terminal board

ii) Software environment: Windows, MATLAB, Simulink, RTW, and QuaRC

iii) Magnetic levitation apparatus with a steel ball

iv) Universal power module: UPM-2405

v) Set of leads

5. Experimental Procedure

i) Using the set of leads, universal power module, magnetic levitation apparatus, and the

terminal board of the Q4 data acquisition card, complete the wiring diagram shown in

Figure 3.

ii) Start MATLAB. In the MATLAB window, choose “C:\ControlLab\Experiment4” from the

Current Directory window. This directory path choice will change the directory from the

default MATLAB directory to the directory where all files needed to perform Experiment

4 are stored.

iii) You can now perform various steps of the magnetic levitation control experiment. However,

before proceeding, you must request your laboratory teaching assistant to check your

electrical connections.

iv) From the File menu of the MATLAB window, select the option Open to load the Simulink

block-diagram “Experiment4 A.mdl.” shown in Figure 4 to your desktop. This will load
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Figure 3: Wiring Diagram for The Magnetic Levitation Experiment

the Simulink diagram file for calibrating the ball sensor voltage when the ball is resting

on the black post. The voltage measured on S1 should be about 0 Volts. A digital display

window will also appear on your Simulink diagram.

a) In the MATLAB window, click the black Start arrow button to acquire the voltage

measured on S1 (position sensor).

b) Adjust the offset potentiometer on the Maglev to obtain 0 Volts.

c) In the MATLAB window, click the black Stop square button when you finish cali-

brating the sensor off-set.

v) Close the currently opened Simulink diagram. From the File menu of the MATLAB

window, select the option Open to load the Simulink block-diagram “Experiment4 B.mdl”

shown in Figure 5 to your desktop. This program applies 1.5 Amperes to the coil which

causes the ball to jump up to the magnet and stay there. The voltage measured on S1

should be between 4.75 and 4.95 Volts.

a) In the MATLAB window, click the black Start arrow button to acquire the
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Figure 4: Simulink Block-Diagram for Ball Position Sensor Offset Calibration

voltage measured on S1 (position sensor).

Figure 5: Simulink Block-Diagram for Ball Position Gain Calibration

4-7



b) Adjust the gain potentiometer on the Maglev to obtain anywhere between 4.75

to 4.95 Volts on the position sensor.

c) In the MATLAB window, click the black Stop square button when you finish

calibrating the sensor gain.

vi) Close the currently opened Simulink diagram. From the File menu of the MATLAB

window, select the option Open to load the Simulink block-diagram “Experiment4 C.mdl”

shown in Figure 6 to your desktop. A plot window will also appear on your desktop. The

various Simulink subblocks used in Figure 6 are given in detail in Figures 7–11.

a) In Figure 6, under the subblock labeled Current Control (Figure 10), the gains

Kp and Ki must be designed and supplied by you. In particular, design a PI

feedback controller so that the two poles of the close-loop electrical subsystem are

-270 and -0.8 respectively. The feedback diagram of the electrical subsystem with

the PI controller is shown in Figure 12, where A 4
= R` + Rs. The characteristic

equation of the closed-loop system in Figure 12 can be used for the purpose of

finding Kp and Ki such that the desired poles are achieved.

b) In Figure 6, under the subblock labeled Mechanical control (Figure 11), the

gains Kp, Ki, and Kd must also be designed and supplied by you. In particular,

design a PID feedback controller so that the ball position step response exhibits

a peak overshoot Mp ≤ 5% with settling time Ts ≤ 0.19 seconds. The close-loop

system is a third order system; hence you must set the third pole to the left of the

dominant complex-conjugate pole-pair. The feedback diagram of the mechanical

subsystem with the PID controller is shown in Figure 13. The characteristic

equation of the closed-loop system in Figure 13 can be used for the purpose

of finding Kp, Ki, and Kd such that the desired performance specifications are

achieved. Note that in Figure 9, a feedforward controller based on (2.6) is also

included to account for the iss term in (2.6).

c) Before proceeding, you must request your laboratory teaching assistant to ap-

prove your gain values. In the MATLAB window, click the black Start arrow

button to acquire the transient and steady-state position step response of the

4-8



ball.

Figure 6: Simulink Block-Diagram for Magnetic Levitation System PID Controller

Figure 7: Calibration Subblock
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Figure 8: Command Subblock

Figure 9: Sensor Delay Removal Subblock
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Figure 10: Current Control Subblock

Figure 11: Mechanical Control Subblock

6. Analysis

i) What is the significance of steps iv) and v) of Section 5 where we adjust the offset and

gain potentiometers, respectively, to achieve the desired voltage from the position sensor?

ii) Evaluate the actual overshoot and setting time of the ball position step response and
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Figure 12: Closed-Loop Feedback Interconnection for PI Control of Electrical Subsystem

Figure 13: Closed-Loop Feedback Interconnection for PID Control of Mechanical Subsystem

compare with the specified overshoot and setting time. Comment.

iii) How will the electrical subsystem (See Figure 12) respond if gains Kp and Ki are selected

to set the two poles of the electrical subsystem at -1 and -0.8?

iv) Can we experimentally set the real root of the closed-loop mechanical subsystem very far

from the imaginary axis, in the left-half plane?
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Experiment 5: Modeling and Linear Quadratic

Control of a Rotary Inverted Pendulum

Concepts emphasized: Dynamic modeling, linearization, state variables, and LQR design.

1. Introduction

The problem of balancing a broomstick in a vertical upright position on a person’s hand (see

Figure 1) is well known to the feedback control community [1, 4]. For any human, a physical

demonstration of the broomstick-balancing act constitutes a challenging task requiring intelligent,

coordinated hand movement based on visual feedback. The instability associated with the equilib-

rium point (α = 0, α̇ = 0), corresponding to the broomstick vertical upright position, leads to the

challenge inherent in the problem.

Figure 1: The Broomstick Balancing Problem [1]

A one-dimensional (1–D) electro-mechanical analogue of the broomstick-balancing problem is

the classical inverted-pendulum-on-cart (IPC) problem [1] (see Figure 2). In the IPC problem, the

cart is moved rectilinearly to keep the pendulum vertical upright. The IPC problem is intimately

related to the problem of balancing a missile immediately after launch [1, 4].

The dynamics of IPC are inherently nonlinear. In addition, similar to the broomstick-balancing

problem, the equilibrium point (α = 0, α̇ = 0) for the inverted pendulum is unstable. The feedback

control design problem for IPC has been extensively studied and a variety of control designs have
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Figure 2: Inverted Pendulum on Cart Problem

been proposed in the literature for this interesting problem. In this laboratory exercise, we will

consider a variant of the IPC problem, viz., the 1–D rotary inverted pendulum (RIP) problem.

The laboratory RIP-model consists of a rigid link (pendulum) rotating in the vertical plane.

The rigid link is attached to a pivot arm which is mounted on the load shaft of the SRV-02 DC-

motor. The pivot arm can be rotated in the horizontal plane by the SRV-02 DC-motor. The SRV-02

DC-motor is instrumented with an encoder and a tachometer. In addition, an encoder is mounted

on the pivot arm to measure the pendulum angle. The principal objective of this experiment is

to balance the pendulum in the vertical upright position and to position the pivot arm. Since the

plant has two degrees of freedom but only one actuator, the system is underactuated and exhibits

significant nonlinear behavior for large pendulum excursion.

In this laboratory exercise, we will develop the governing differential equations of motion for the

RIP-system using Lagrange’s method [3]. Next, we will linearize the nonlinear RIP-model dynamics

in the neighborhood of interest and develop a state-space model for the system. In addition, we will

briefly outline the Linear Quadratic Regulator (LQR) design methodology [5]. For step command

tracking, we will unify the integral control scheme with the LQR control design technique [2].

Finally, we will design, implement, and evaluate the performance of an LQ tracking control law on

the laboratory RIP test-bed.
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2. Background

Mechanical system modeling: A schematic representation of the rotary inverted pendulum

is given in Figure 3 where lp denotes the pendulum helf-length and mp denotes the pendulum mass.

Assume that the pendulum rod is rigid and massless. Let α be the angle of the rod from the vertical

axis z. The pivot arm OA has length r. The total effective mass moment of inertia reflected at the

output shaft of the SRV-02 DC-motor apparatus is called the base mass moment of inertia and is

denoted by Jb. Note that Jb includes moment of inertia of DC-motor, tachometer, various gears,

and pivot arm; all reflected at the center of rotation O. The SRV-02 DC-motor applies a torque τ

on the pivot arm OA.

Figure 3: Simplified Model of Rotary Inverted Pendulum

Next, note that the position vector OB in the cylindrical coordinate frame er–eθ–ez is given by

−−→
OB = rer + lp sin α eθ + lp cos α ez . (2.1)

Furthermore, note that the coordinate frame er–eθ–ez has angular velocity θ̇ez . Next, computing
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d
dt

−−→
OB, the velocity of mass mp (or point B) is given by

−→v = −lpθ̇ sinα er + (rθ̇ + lpα̇ cos α)eθ − lpα̇ sinα ez . (2.2)

Now, it follows from (2.2) and the notation v 4
= |−→v | that

v2 = (lpθ̇ sin α)2 + (rθ̇ + lpα̇ cos α)2 + (lpα̇ sin α)2. (2.3)

Next, note that the total kinetic energy of the RIP-system is the sum of kinetic energies of the

pendulum mass mp and the base inertia Jb, which are given by

Tp =
1
2
mpv

2, (2.4)

and

Tb =
1
2
Jbθ̇

2, (2.5)

respectively. Thus, the total kinetic energy of the RIP-system is

T =
1
2
(mpv

2 + Jbθ̇
2). (2.6)

Furthermore, the potential energy of the RIP-system is given by

U = mpglp cosα, (2.7)

where g is the gravitational acceleration. Finally, note that computing the work done by the

external torque τ (applied by the SRV-02 DC-motor)

δW = τδθ,

the generalized forces are identified to be

Qθ = τ, Qα = 0. (2.8)

Now, we use Lagrange’s equations [3] for θ and α coordinates given by

d
dt

(
∂T

∂θ̇

)
− ∂T

∂θ
+

∂U

∂θ
= Qθ, (2.9)

and

d
dt

(
∂T

∂α̇

)
− ∂T

∂α
+

∂U

∂α
= Qα, (2.10)
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to obtain

(mpr
2 + Jb + mpl

2
p sin2 α)θ̈ + (mprlp cosα)α̈ − (mprlp sinα)α̇2 + (2mpl

2
p sinα cosα)α̇ θ̇ = τ, (2.11)

and

mpl
2
pα̈ + (mprlp cos α)θ̈ − (mpl

2
p sin α cos α)θ̇2 − mpglp sinα = 0, (2.12)

respectively.

Next, we simplify the dynamic model (2.11), (2.12) by linearizing it in the vicinity of the

equilibrium point (α = 0, α̇ = 0), which corresponds to the pendulum maintaining a vertical

upright position. Thus, in (2.11), (2.12), we replace sin α ≈ α and cosα ≈ 1 and neglect the

higher-order terms in the variables α, α̇, etc. This leads to the linearized RIP-system dynamics

(mpr
2 + Jb)θ̈ + mprlpα̈ = τ, (2.13)

mpl
2
pα̈ + mprlpθ̈ − mpglpα = 0. (2.14)

After simple algebraic manipulation of (2.13), (2.14), we obtain the following linear, state-space

representation [5] of the RIP-system



θ̇

α̇

θ̈
α̈


 =




0 0 1 0
0 0 0 1
0 −mprg

Jb
0 0

0 Jb+mpr2

lpJb
g 0 0







θ
α

θ̇
α̇


 +




0
0
1
Jb

− r
lpJb


 τ. (2.15)

DC-motor dynamics: Recall from Experiment 3 that, neglecting the armature inductance

La, equations (2.2) and (2.3) of Experiment 3 yield

Va = iaRa + Kbωm

= iaRa + KbKgω`, (2.16)

since ωm = Kgω` where ω`
4
= θ̇ is the load (i.e., the pivot arm) angular velocity. Now, it follows

from (2.16) that

ia =
Va

Ra

− KbKg

Ra

ω`. (2.17)

Next, using τ = KgTm and equation (2.1) of Experiment 3, it follows that

τ = KgKTia. (2.18)
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Hence, using (2.17) in (2.18), and noting that in the SI-units the numerical values of KT and Kb

are identical [4], we obtain

τ =
KbKg

Ra

Va −
K2

bK2
g

Ra

ω`. (2.19)

The numerical values of the mechanical and electrical subsystem parameters for the laboratory

RIP-model are provided in Table 1 below.

Physical quantity Symbol Numerical value Units
Pivot arm length r 8.75× 0.0254 meter
Base mass moment of inertia Jb 0.005 Kg-meter2

Pendulum length 2lp 13.125× 0.0254 meter
Pendulum mass mp 0.126 Kg
Gravitational constant g 9.8 meter/sec2

DC-motor armature resistance Ra 2.6 Ohm
Motor constant KT, Kb 0.00767 N-m/Amp, Volt-sec/rad
Gear ratio Kg 14 × 5

Table 1: Numerical Values for Physical Parameters of The RIP-System

Finally, substituting (2.19) into (2.15), rearranging terms, and using the numerical parameter

values given in Table 1, we obtain the RIP-system model given by



θ̇
α̇

θ̈
α̈


 =




0 0 1 0
0 0 0 1
0 −55.0710 −22.2484 0
0 132.2206 29.6645 0







θ

α

θ̇

α̇


 +




0
0

41.4385
−55.2514


Va. (2.20)

3. LQR-Based Controller Design

Linear quadratic regulator theory: The LQR theory is a powerful method for the control of

linear systems in the state-space domain. The LQR technique generates controllers with guaranteed

closed-loop stability robustness property even in the face of certain gain and phase variation at

the plant input/output. In addition, the LQR-based controllers provide reliable closed-loop system

performance despite the presence of stochastic plant disturbance. The LQ control design framework

is applicable to the class of stabilizable linear systems.

Next, we briefly summarize the LQR theory. Given an nth-order stabilizable system

ẋ(t) = Ax(t) + Bu(t), t ≥ 0, x(0) = x0, (3.1)
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where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the input vector, determine the matrix gain

K ∈ Rm×n such that the static, full-state feedback control law

u(t) = −Kx(t), (3.2)

satisfies the following criteria:

i) the closed-loop system (3.1) and (3.2) is asymptotically stable and

ii) the quadratic performance functional

J(K) 4
=

∫ ∞

0
[xT (t)R1x(t) + uT (t)R2u(t)]dt, (3.3)

where R1 is a nonnegative-definite matrix that penalizes the departure of system states

from the equilibrium and R2 is a positive-definite matrix that penalizes the control input,

is minimized.

The solution of the LQR problem can be obtained via a Lagrange multiplier-based optimization

technique and is given by

K = R2
−1BT P, (3.4)

where P ∈ Rn×n is a nonnegative-definite matrix satisfying the matrix Riccati equation

0 = ATP + PA + R1 − PBR2
−1BT P. (3.5)

Note that it follows from (3.2) that the LQR-based control design requires the availability of

all state variables for feedback purpose. The state variables for the laboratory RIP-system model

are identified from (2.20) to be θ, α, θ̇ and α̇. For our laboratory RIP-model, the pivot arm

angle θ and angular velocity θ̇ are measured by an encoder and a tachometer, respectively. The

pendulum angular position α is measured by another encoder. The pendulum angular velocity α̇

is not measured by any physical sensor, instead, we numerically compute α̇ by implementing a

low-pass differentiator, e.g. 100s
s+100 , as part of the overall control scheme.

In order to design an LQR controller for the RIP-system, we identify the plant dynamics A and

input matrix B from (2.20). In addition, we choose the weighting matrices R1 and R2 to penalize
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the state and control variables, respectively, as

R1 =




0.25 0 0 0
0 4 0 0
0 0 0 0
0 0 0 1


 , R2 = 0.2. (3.6)

Note that in (3.6), R1 places a significantly higher penalty on the pendulum angle α excursions

(R1(2, 2) = 4) than the pivot arm angle θ excursions (R1(1, 1) = 0.25). In addition, the pendulum

angular velocity α̇ is penalized (R1(4, 4) = 1) whereas the pivot arm angular velocity θ̇ is not

penalized at all (R1(3, 3) = 0). This R1 prevents large departure of pendulum angle α from

the equilibrium and the tendency of the pendulum to fall down; thus maintaining the pendulum

equilibrium (α = 0, α̇ = 0). The control penalty R2 given in (3.6) is determined by trial and error.

A larger value for R2 will lead to smaller control effort and larger excursions of θ and α whereas a

smaller value of R2 will lead to larger control effort which may saturate the actuator.

Next, an LQR controller for the given data is designed by using the MATLAB command lqr

to solve the matrix Riccati equation (3.5) and to compute the controller gain (3.4). In particular,

executing K = lqr(A, B, R1, R2), in the MATLAB command window (with the input variables in

the MATLAB memory) we obtain the feedback regulator gain

K =
[
−1.1180 −19.7995 −1.6190 −3.2299

]
V/rad,

=
[
−0.0195 −0.3460 −0.0283 −0.0565

]
V/deg. (3.7)

Finally, the controlled voltage to be applied to the SRV-02 DC-motor is given by

Va(t) = −0.0195θ(t)− 0.3460α(t)− 0.0283θ̇(t) − 0.0565α̇(t). (3.8)

LQR-based tracking controller design: The LQR-based control law (3.8) renders the origin

of the RIP-system asymptotically stable, i.e., lim
t→∞

x(t) → 0 with (3.8). Thus, although the above

controller maintains the pendulum in the vertical upright position, it does not allow one to position

the pivot arm arbitrarily. An LQR-based controller can be designed to position the pivot arm at a

nonzero angle by shifting the origin of the state variable θ to the desired set point of the pivot arm

angular position. However, external disturbances and nonlinear effects, e.g., gravity, gear backlash,

etc., present in the RIP-model may lead to poor closed-loop system performance for LQR-based

set point controllers. Next, recall from the classical control theory that the integral control action
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yields zero steady-state error for constant command input tracking even in the presence of exogenous

disturbances. Thus, in this experiment, to design a tracking controller which positions the pivot

arm as well as maintains the pendulum vertical upright, we unify the integral control scheme with

the LQR design methodology.

Hence, consider the feedback diagram shown in Figure 4 where the integrator 1
s has been

introduced to enable the pivot arm to track constant command angle. Note, that the integral state

xI satisfies

ẋI = e, (3.9)

where

e 4
= θ − r. (3.10)

Note that in (3.10) r is the desired, constant pivot arm angular position. In addition, it follows

from (3.10) that

ė = θ̇. (3.11)

Now, replacing the θ̇ equation in the vector differential equation (2.20) by (3.11) and augmenting

the resulting vector differential equation with (3.9), we obtain the state-space model



ė

α̇

θ̈

α̈
ẋI




=




0 0 1 0 0
0 0 0 1 0
0 −55.0710 −22.2484 0 0
0 132.2206 29.6645 0 0
1 0 0 0 0







e

α

θ̇

α̇
xI




+




0
0

41.4385
−55.2514

0




Va. (3.12)

Next, we select the following design variables for the LQR-based tracker design

R1a =




0.25 0 0 0 0
0 4 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0.04




, R2a = 0.05. (3.13)

Now, using the augmented system dynamic matrix Aa and input matrix Ba from (3.12) and the

weighting matrices R1a and R2a from (3.13), we can design the augmented feedback control gain

Ka by executing the MATLAB command Ka = lqr(Aa, Ba, R1a, R2a). Finally, the feedback gains

K and KI implemented in Figure 4 are obtained from
[

K KI

]
= Ka.
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Figure 4: Integral Control of Rotary Inverted Pendulum

4. Objective

i) Develop and linearize the governing differential equations of the RIP-system.

ii) Design and implement a stabilizing LQR-based controller for the laboratory RIP-model.

iii) Design and implement an LQR-based tracker for the laboratory RIP-model.

5. Equipment List

i) PC with Q4 data acquisition card and terminal board

ii) Software environment: Windows, MATLAB, Simulink, RTW, and QuaRC

iii) SRV-02 geared DC-motor apparatus with an optical encoder and tachometer; pivot arm

attachment with an encoder; and pendulum

iv) Universal power module: UPM-1503

v) Set of leads

6. Experimental Procedure

i) Using the set of leads, universal power module UPM 1503, SRV-02 DC-motor apparatus,

and the terminal board of the Q4 data acquisition card, complete the wiring diagram

shown in Figure 5.
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Encoder Inputs

Analog Outputs

Analog Inputs

Rotary Inverted SystemRotary Inverted System

Pendulum Encoder

Q4 Terminal Board

Figure 5: the Wiring Diagram for Rotary inverted Pendulum

ii) Start MATLAB. In the MATLAB window, choose “C:\ControlLab\Experiment5” from the

Current Directory window. This directory path choice will change the directory from the

default MATLAB directory to the directory where all files needed to perform Experiment

5 are stored.

iii) You can now perform various steps of the rotary inverted pendulum experiment. However,

before proceeding, you must request your laboratory teaching assistant to check your

electrical connections.

iv) At the MATLAB command prompt, execute the script Experiment5a.m. This will

assign the numerical values of the physical parameters of the RIP-model, compute the

linear state-space model (2.20), assign the penalty matrices R1 and R2 of (3.6), and solve
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the LQR problem to generate the controller gain (3.7). Note that for this part of the

experiment the integral control gain KI is set to zero.

v) From the File menu of the MATLAB window, select the option Open to load the Simulink

block-diagram “Experiment5.mdl.” as shown in Figure 6 to your desktop. This will load

the model file for conducting the RIP stabilization experiment.

Figure 6: Simulink Block-Diagram for LQR-Based RIP Stabilization

a) In order to properly start the controller, move the pivot arm to the zero position

and hold the pendulum in the vertical upright position when you click the black

Start arrow button.

b) Record the time response of the pendulum angle alpha and the pivot arm angular

position theta.

c) Apply a slight tap to the pendulum so that it falls around 2.5 degrees which

causes the arm to move toward the falling direction. Record the time response
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of pendulum angle α and pivot arm angular position θ.

d) Note that the LQR controller (3.7) implemented in this part of the experiment

does not include the integral control action. To evaluate the pivot arm tracking

performance of controller (3.8), change the value of the Constant block in the

Simulink block-diagram of Figure 6 and record the time response of pendulum

angle α and pivot arm angular position θ.

vi) To design the LQR-based tracker outlined in Section 3, execute the script Experiment5b.m

at the MATLAB command prompt. This will produce the augmented system dynamics

and input matrices, the augmented state and control penalty matrices, and the controller

gain Ka along with its partitions K and KI. Next, repeat steps v.a)–v.d) given above.

7. Analysis/Assignment

i) In Section 2, we developed the nonlinear RIP-system dynamic model (2.11) and (2.12)

by approximating the pendulum as a point mass concentrated at the pendulum center

of gravity. In addition, in Section 2, the point mass mp is assumed to be attached to a

massless rigid bar of length lp. The preceding assumptions essentially ignore the rotational

effects of pendulum mass moment of inertia on system dynamics. Develop a complete

nonlinear RIP-system model which accounts for the rotational effects of the pendulum

mass moment of inertia.

ii) Analyze the scripts “Experiment5a.m” and “Experiment5b.m.”

iii) Analyze and comment on your experimental results. In addition, contrast the performance

of the stabilizing control law with the tracking control law.

iv) Analyze the effects of the Control Filter and Tach Filter blocks in the Simulink block-

diagram of Figure 6.

v) Identify the nonlinearities present in the laboratory RIP-system and discuss their effects

on the system response.
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Experiment 6: Level Control of a Coupled Water Tank

Concepts emphasized: Dynamic modeling, time-domain analysis, and proportional-plus-

integral control.

1. Introduction

Industrial applications of liquid level control abound, e.g., in food processing, beverage, dairy,

filtration, effluent treatment, and nuclear power generation plants; pharmaceutical industries; water

purification systems; industrial chemical processing and spray coating; boilers; and automatic liquid

dispensing and replenishment devices. The typical actuators used in liquid level control systems

include pumps, motorized valves, on-off valves, etc. In addition, level sensors such as displacement

float, capacitance probe, pressure sensor [1], etc. provide liquid level measurement for feedback

control purpose. In this laboratory exercise, the students model, calibrate, and control a two-

tank level control system. In particular, this experiment exposes the students to the fundamental

modeling principle of fluid mass balance, pressure sensor calibration, and a feedback control design

methodology for a state-coupled, two-tank level control system.

2. Background

System Modeling: The schematic drawing in Figure 1 represents the model of a two degree-

of-freedom (DOF) state-coupled, water tank system. This system consists of two tanks with orifices

and level sensors at the bottom of each tank, a pump, and a water basin. The two tanks have same

diameters and can be fitted with different diameter outflow orifices. In this laboratory setup, the

pump provides infeed to Tank 1 and the outflow of Tank 1 becomes infeed to Tank 2. The outflow

of Tank 2 is emptied into the water basin. The following conditions with regard to the system

dynamic model are used to describe the level of water in Tanks 1 and 2.

i) The water levels in Tanks 1 and 2 are measured by two pressure sensors;

ii) the level of water in Tank 1 is always less than 30cm;

iii) the desired level of water in Tank 2 is always greater than 0cm and less than 20cm;

iv) the voltage applied at the input terminals of the pump is between 0 and 22 Volts.
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Figure 1: State-Coupled Two-Tank System

Based on the above assumptions, the dynamic equations for the liquid level in the two tanks

are derived as follows. Note that for each tank the time rate of change of liquid level is given by

L̇i(t) =
1
Ai

(
F in

i (t) − F out
i (t)

) cm
sec

, i = 1, 2, (2.1)

where Li, Ai, F in
i , and F out

i are the liquid level, cross-sectional area, inflow rate, and outflow rate,

respectively, for the ith tank. Next, note that the inflow rate to Tank 1 is given by

F in
1 (t) = KpVp

cm3

sec
, (2.2)

where Kp is the pump constant ( cm3

Volts-sec) and Vp is the voltage applied to the pump. In addition,

using Bernoulli’s law for flow through small orifices, the outflow velocity from the orifice at the

bottom of each tank is

vout
i (t) =

√
2gLi

cm
sec

, i = 1, 2. (2.3)

Then, the outflow rate for each tank is given by

F out
i (t) = ai

√
2gLi

cm3

sec
, i = 1, 2, (2.4)

where g is the gravitational acceleration and ai denotes the cross-sectional area of the outflow orifice

at the bottom of the ith tank. Finally, note that for the two-tank level control system shown in

Figure 1

F in
2 (t) = F out

1 (t). (2.5)
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Thus, using (2.1)–(2.5), we obtain the dynamic equations for the liquid level in the two tanks as

L̇1(t) = − a1

A1

√
2gL1(t) +

Kp

A1
Vp(t), (2.6)

L̇2(t) =
a1

A2

√
2gL1(t) −

a2

A2

√
2gL2(t). (2.7)

Remark 2.1. Note that using (2.6), we can compute the steady-state pump voltage Vpss that

produces the desired steady-state constant level L1ss in Tank 1. Specifically, setting L̇1(t) = 0 in

(2.6) yields

Vpss
= a1

√
2gL1ss

Kp

. (2.8)

In a similar manner, we can compute the steady-state level L1ss in Tank 1 that produces the desired

steady-state constant level L2ss in Tank 2. Specifically, setting L̇2(t) = 0 in (2.7) yields

L1ss =
(

a2

a1

)2

L2ss . (2.9)

Now, theoretically one can use (2.8) and (2.9) to regulate the water level in Tank 2. However, ex-

ternal disturbances, system parameter uncertainty/variation, etc., necessitate a feedback controller

to improve the level control system performance.

Next, defining a set of shifted variables

`1(t) 4
= L1(t)− L1ss , (2.10)

`2(t) 4
= L2(t)− L2ss , (2.11)

u(t) = Vp(t) − Vpss
, (2.12)

we can rewrite the dynamic equations (2.6) and (2.7) as

˙̀
1(t) = − a1

A1

√
2g(`1(t) + L1ss) +

Kp

A1

(
u(t) + Vpss

)
, (2.13)

˙̀
2(t) =

a1

A2

√
2g(`1(t) + L1ss) −

a2

A2

√
2g(`2(t) + L2ss). (2.14)

Finally, linearizing (2.13), (2.14), about (`1 = 0, `2 = 0, u = 0), we obtain

˙̀
1(t) = α1`1(t) + β1u(t), (2.15)

˙̀
2(t) = α2`2(t) + β2`1(t), (2.16)
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where

α1
4
= − a1

A1

√
g

2L1ss

, β1
4
=

Kp

A1
,

α2
4
= − a2

A2

√
g

2L2ss

, β2
4
=

a1

A2

√
g

2L1ss

. (2.17)

Next, we address the level control problem for Tank 2 (i.e., set-point tracking of L2(t)) via a

subsystem decomposition of (2.15) and (2.16). In particular, we consider the level control for L2

via the subsystem dynamics (2.16) with `2 and `1 as the subsystem output and input, respectively.

The level control problem for the Tank 2 subsystem necessitates the control of level L1 in Tank 1.

The problem of controlling L1 is addressed via the subsystem dynamics (2.15) with `1 and u as the

subsystem output and input, respectively.

Now, we develop the transfer function models for the subsystem dynamics (2.15) and (2.16).

Thus, taking the Laplace transform of (2.15) and arranging terms, we obtain

G1(s) 4
=

`1(s)
u(s)

=
β1

s − α1
, (2.18)

where `1(s) 4
= L[`1(t)] and u(s) 4

= L[u(t)] and L is the Laplace operator. Similarly, taking the

Laplace transform of (2.16) and arranging terms, we obtain

G2(s) 4
=

`2(s)
`1(s)

=
β2

s − α2
, (2.19)

where `2(s) 4
= L[`2(t)].

The numerical values of the parameters for the laboratory two-tank water level control system

are provided in Table 1 below. Note that the variables αi and βi, for i = 1, 2, in (2.17) are computed

with L1ss = L2ss = 12cm.

Physical quantity Symbol Numerical value Units
Tank 1, 2 diameters D1, D2 4.425 cm
Tank 1, 2 orifice diameters d1, d2 0.47625 cm
Pump constant Kp 4.6 cm3

Volts-sec
Gravitational constant g 980 cm

sec2

Table 1: Numerical Values for Physical Parameters of Two-Tank Level Control System

6-4



3. Objective

Proportional-plus-integral (PI) control of the state-coupled, two-tank system to track a desired

level of water in Tank 2.

4. Equipment List

i) PC with Q4 data acquisition card and terminal board

ii) Software environment: Windows, MATLAB, Simulink, RTW, and QuaRC

iii) Water Tank apparatus with a water basin

iv) Universal power module: UPM-2405

v) Set of leads

5. Experimental Procedure

i) Using the set of leads, universal power module, water tank apparatus, and the terminal

board of the Q4 data acquisition card, complete the wiring diagram shown in Figure 2.

ii) Start MATLAB. In the MATLAB window, choose “C:\ControlLab\Experiment6” from the

Current Directory window. This directory path choice will change the directory from the

default MATLAB directory to the directory where all files needed to perform Experiment

6 are stored.

iii) You can now perform various steps for the level control of coupled water tanks. However,

before proceeding, you must request your laboratory teaching assistant to check your

electrical connections.

iv) From the File menu of the MATLAB window, select the option Open to load the Simulink

block-diagram “Experiment6 A.mdl” shown in Figure 3 to your desktop. This will load

the files for calibrating the pressure sensor voltage when there is no water in Tanks 1 and

2. The voltage measured on S1 and S2 should be 0 Volts.

a) In the MATLAB window, click the black Start arrow button to acquire the voltages

measured on S1 (the level of water in Tank 1) and S2 (the level of water in Tank 2).
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Encoder Inputs

Analog Outputs

Analog Inputs

234 1

Water Tank Back Panel

Level Sensors
1 and 2

Q4 Terminal Board

UPM-2405

S1&S2    S3    S4 To A/D

From D/A To Load
Pump

Figure 2: Wiring Diagram for Two-Tank Level Control

b) Adjust the offset potentiometers 1 and 2 on the water tank apparatus back panel

to obtain 0 Volts.

c) In the MATLAB window, click the black Stop square button when you finish cali-

brating the sensor off-set.

v) Fill water into Tank 1 upto the 25cm level. The voltage measured on S1 should now be

about 4.1 Volts.

a) In the MATLAB window, click the black Start arrow button to acquire the

voltage measured on S1 (pressure sensor).

b) Adjust the gain potentiometer 1 on the water tank apparatus back panel to

obtain any where between 4.0 to 4.2 Volts on S1 (pressure sensor).

c) In the MATLAB window, click the black Stop square button when you finish

calibrating the sensor gain.

vi) Repeat (v) for Tank 2.
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Figure 3: Simulink Block-Diagram for Water Pressure Sensor Offset and Gain Calibration

vii) Close the currently opened Simulink diagram. From the File menu of the MATLAB

window, select the option Open to load the Simulink block-diagram “Experiment6 B.mdl”

shown in Figure 4 to your desktop. A plot window will also appear on your desktop. The

various Simulink subblocks used in Figure 4 are given in detail in Figures 5 and 6.

a) At the MATLAB command prompt, execute the script Experiment6.m. This

will assign the numerical values of the physical parameters of the two-tank level

control system.

b) In Figure 4, under the subblock labeled Tank 1 Controller (Figure 5), the gains

kp1 and ki1 must be designed and supplied by you. In particular, design a PI

controller so that the closed-loop Tank 1 subsystem response exhibits a peak

overshoot less than 1.5% and settling time less than 10 seconds. Note that G1(s)

given by (2.18) denotes the open-loop transfer function for the Tank 1 subsystem.

Furthermore, note that in Figure 4, a feedforward controller based on (2.12) is

also implemented for the Tank 1 subsystem to account for the Vpss
term in (2.12).

c) In Figure 4, under the subblock labeled Tank 2 Controller (Figure 6), the gains
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Figure 4: Simulink Block-Diagram for Two-Tank System PI Control

kp2 and ki2 must also be designed and supplied by you. In particular, design a

PI controller so that the closed-loop Tank 2 subsystem response exhibits a peak

overshoot less than 3.5% and settling time less than 20 seconds. Note that G2(s)

given by (2.19) denotes the open-loop transfer function for the Tank 2 subsystem.

Furthermore, note that in Figure 4, a feedforward controller based on (2.10) is

implemented for the Tank 2 subsystem to account for the L1ss term in (2.10).

d) Before proceeding, you must request your laboratory teaching assistant to ap-

prove your gain values. In the MATLAB window, click the black Start arrow

button to acquire the transient and steady-state step response of the level of

water in Tank 2.

6. Analysis

i) Analyze the script “Experiment6.m” and the simulink control diagram “Experiment6 B.mdl.”

ii) Build a nonlinear simulation model (using Simulink) for the two-tank level control system.
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Figure 5: Tank 1 Controller Subblock

Figure 6: Tank 2 Controller Subblock
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Note that as in the laboratory setup, for the simulation model the input voltage to the

pump must be limited to 22 Volts. Obtain the open-loop response of the system. In

addition, obtain the closed-loop response of the simulation model. How does the simulated

system response compare with the experimental response?

iii) Obtain the closed-loop response for the simulation model of the two-tank level control

system with a) only the PI controller and b) only the feedforward controller.

iv) Analyze and comment on your experimental results. Specifically, analyze the experimental

time response of water levels in Tanks 1 and 2. Does the system response meet the

performance specifications? Explain.

v) Obtain the experimental response of the two-tank system to disturbances. Note that

addition of water into Tank 1 and/or Tank 2 from any source other than the pump

constitutes an exogenous disturbance.
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