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Abstract— Range of motion (ROM) is an important indicator
of an individual’s physical health, and its degradation impacts
their ability to perform activities of daily living. The elderly
are particularly susceptible to mobility-loss due to muscular
decline, neuromuscular disorders, sedentary lifestyle, etc. Thus,
they must undergo periodic ROM assessments to track their
physical well-being and consult doctors for any decline in ROM.
An at-home ROM assessment device can assist the elderly to
self-perform ROM assessment and facilitate remote monitoring
of and compliance to therapy. The pervasive adoption of digital
voice assistants (DVAs), that include a monocular camera,
offers an opportunity for at-home ROM assessment. This paper
proposes using a DVA for ROM measurement by utilizing 2D
pose estimation techniques to estimate 3D limb pose for specific
exercises. The system employs the MediaPipe library to perform
2D pose estimation and uses the joint coordinates to find the 3D
pose of the limb using a 2D projection method. To validate the
system, it is first compared with a 3D human model performing
various shoulder and elbow exercises in a virtual environment.
Next, for further validation, a neurologically intact individual
performs the same exercises and the results of the proposed
system are compared with the results from a markerless optical
motion capture system (Kinect). The Bland-Altman limits of
agreement (LOA) are computed and provided for the two
sets of comparisons. The results demonstrate the feasibility of
the proposed system in providing reliable ROM measurements
using a DVA and suggest possible enhancements.

Clinical relevance— This paper introduces the idea of ROM
measurement using digital voice assistants embedded with a
monocular camera.

I. INTRODUCTION
With the advent of smart devices, high-speed internet, and

digital services, many hospitals and clinics have embraced
telemedicine and digital healthcare as a viable service to
the public [1]. In the context of the Coronavirus-2019 pan-
demic, a large majority of people in the US have started to
receive virtual clinical services [2]. Currently, such services
entail teleconferencing software, making the interactions a
virtual analog of an in-person visit to a doctor’s office.
However, other aspects of telehealth are yet to make their
transition to the digital domain. One such aspect is data-
driven telemedicine and therapy compliance monitoring in
elderly care. A paradigm shift is waiting to unfold, since
the technology to make it happen is already available, albeit
used for other purposes. Digital voice assistants (DVAs) are
one example of such a technology. The last decade has seen
a growth in the adoption of DVAs, with 46% of the US
population already using some kind of DVAs as of 2017 [3].
Recently, DVAs have started to ship with built-in cameras,
which greatly increases the potential of these devices. Yet,
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today the DVAs are used in a limited capacity, e.g., video
conferencing, information retrieval, smart home control, etc.

As indicated previously, in recent years, discussions about
digital healthcare and telehealth have come to the forefront
[4] with an emphasis on geriatric health [5]. Even as the
use of DVAs as a modality for telehealth and telemedicine
remains a nascent concept, efforts are afoot to explore their
utility and effectiveness for synchronous and asynchronous
healthcare delivery [6], in remote healthcare monitoring
[7], and as a conversational agent for the elderly [8]. The
recent integration of built-in cameras in the DVAs offers yet
another opportunity to embed novel modalities for therapy
compliance into the DVA device ecosystem. Thus, this paper
proposes a DVA application for the ROM measurement,
which is traditionally performed with sensor-based [9] or
optical [10] methods. We demonstrate the use of the built-in
camera of a DVA device for ROM monitoring. This proof-
of-concept system can be explored further to develop more
effective telehealth solutions involving the DVA devices, e.g.,
for remote monitoring of compliance with physical therapy.

The paper is organized as follows. Section 2 elaborates
on the design and development of the system used for ROM
tracking. Section 3 discusses the results based on the pre-
liminary work and addresses the benefits and shortcomings
of the approach used. Finally, section 4 provides concluding
remarks and suggests directions for future research.

II. DESIGN AND DEVELOPMENT
Our prototype is based on the Google Nest Hub Max DVA

device. A computer acts as a local server and uses the Nest
API to access the live stream of the device’s camera through
a Real-Time Streaming Protocol. An if-this-then-that applet
accesses the Google Assistant in the DVA to respond to a
user’s voice commands. When the user issues a command,
such as, “OK Google, start ROM app”, the applet sends a
GET request using the Flask web framework to the server.
Once the command is acknowledged by the server, it starts
receiving the live stream from the DVA camera, and the ROM
measurement application starts on the server. A confirmation
is sent to the user as a voice response by the Google Assistant
and the user can start performing the exercise. Fig. 1 shows
the overview of the proposed system and various alternative
ways in which an overall system can be constructed.

We consider a 3D pose estimation problem with a subject
standing at a fixed distance from the DVA camera. It is
assumed that the subject’s frontal plane (see Fig. 2) is parallel
to the camera image plane (see Fig. 1). To determine the 3D
pose, 33 image coordinates (i.e., landmarks) in R2 corre-
sponding to the body joints are detected using the MediaPipe



Fig. 1: Overview of the proposed system.

library that utilizes the BlazePose [11] pose detection model.
For studying the upper extremity ROM, we use eight of
the 33 landmarks from the MediaPipe. Although the model
provides the landmarks in R3, the z-coordinate is discarded
as it has a high variance in error when consecutive tests are
carried out for the same pose.
A. Shoulder ROM measurement using camera image

Glenohumeral joint motion is modelled using spherical
coordinates [12] where the joint is at the center. We consider
that the wrist skirts the periphery of a virtual sphere. The
three angles of interest are the thoracohumeral angle, i.e.,
the shoulder elevation angle θ, the clavicular-humeral angle
projected on the transverse plane, i.e., the shoulder plane
angle φ, and the humeral rotation around the long axis, i.e.,
the internal-external rotation angle ψ. The notation used and
measurements performed for the right arm in this paper can
be analogously extended to the left arm. Fig. 2 depicts the
angles and their relation to the cardinal planes.

1) Calibration Step: First, the user stands in front of the
DVA camera with arms down to the side in a “rest pose”.
The system calculates the length of the trunk vector ~TN ,
ŜB − ŜM , the maximum length of the right arm vector ~AR ,
ŴR − ŜR, and the maximum length of the right forearm
vector ~FR , ŴR − ÊR in pixel space. These calculations
are performed for N = 50 samples and the length averages
TNavg , ARavg , and FRavg are computed to mitigate any errors
due to noise. The angle θ (or ψ) calculation is performed
using the ratio of the length of the arm (or forearm) to the
length of the trunk for the rest pose in which it is maximum
and denoted as the rest ratio ar (or fr) shown below

ar =
ARavg

TNavg

and fr =
FRavg

TNavg

. (1)

This step helps overcome any changes in the apparent arm
(or forearm) length due to a shift in perspective. Next, for
calculating φ, we compute the stretch ratio as with the user
arm stretched to the side, yielding as = ar|θ=90◦,φ=0◦ .

2) Calculation step: We now determine the shoulder and
elbow angles corresponding to various ROM exercises. We
begin by noting that for two arbitrary vectors ~vi = ŷi − x̂i,
i = 1, 2, the point of projection p̂ of the vector ~v2 on the
vector ~v1 is given by

p̂ = proj~v1 ~v2 + x̂1 =

(
~v1 · ~v2
‖~v1‖2

)
~v1 + x̂1. (2)

Using (2), we can now determine the following quantities:
(i) the vertical and horizontal projections of the elbow ÊR

Fig. 2: Joint positions obtained from the MediaPipe and the vectors used to
compute the joint angles: ·̂ and~· denote points and vectors, respectively.

on the base vector ~SB and the trunk vector ~TN , denoted
as Êx and Êy , respectively; (ii) the vertical and horizontal
projections of the wrist ŴR on ~SB and ~TN , denoted as Ŵx

and Ŵy , respectively; and (iii) the vertical projection of the
shoulder ŜR on ~SB , denoted as Ŝx. See Fig. 2 that shows
the projections Êx, Êy , Ŵx, Ŵy , and Ŝx for the right arm.

It can be shown that for a 2D projection of a vector rotating
inside a sphere with radius equal to the length of the rotating
vector, the change in the distance from the vertical projection
point of a vector (Êy or Ŵy) to ŜM is directly proportional to
cos(θ). Thus, θ can be calculated for the shoulder abduction-
adduction and flexion-extension exercises as shown in (3).
With the user at a constant distance from the DVA camera
and when θ = 90◦, φ can similarly be calculated as shown
in (3). For the shoulder internal-external rotation exercise, let
the upper arm point downwards (i.e., θ = 0◦), and flex the
elbow to 90◦ (i.e., elbow angle α = 90◦). Then the internal-
external rotation (i.e., shoulder angle ψ) can be computed
as shown in (3). Finally, for the elbow flexion-extension
exercise, the arm is kept parallel to the camera image plane
(i.e., φ = 0◦) and the elbow angle α, between the upper arm
~UR and forearm ~FR is calculated as shown in (3).

θ = cos−1

(
Ŵy − ŜM
TNavgar

)
, φ = cos−1

(
Ŵx − Ŝx
TNavgas

)
,

ψ = cos−1

(
Ŵx − Êx
TNavgfr

)
, α = cos−1

 ~UR · ~FR∣∣∣~UR∣∣∣∣∣∣~FR∣∣∣
 . (3)

B. Experiment design
A virtual environment is created using the Unity Engine

(Unity Software Inc., San Francisco, CA, USA) to compare
the proposed system with the synthetic ground truth data. The
virtual environment comprises of an SMPL-X [13] 3D hu-
man model standing in front of a virtual camera. The SMPL-
X model undergoes various exercises for the right arm: (i)
shoulder abduction-adduction (φ = 0◦, θ ∈ [0, 170]◦); (ii)
shoulder flexion-extension (φ = 90◦, θ ∈ [0, 170]◦); (iii)
shoulder plane angle (θ = 90◦, φ ∈ [0, 90]◦); (iv) shoulder
internal-external rotation (θ = 0◦, α = 90◦, ψ ∈ [−50, 50]◦);
and (v) elbow flexion-extension (φ = 0, α = [0, 130]◦). To
further validate the system, the exercises are repeated by a
neurologically intact individual with nominal upper extremity
ROM while the data is collected and results are compared for
the proposed approach vs. the Kinect. See Fig. 3 for details.



(a) (b)

Fig. 3: Comparison between the data from (a) the synthetic ground truth vs. the proposed method and (b) Kinect vs. the proposed method.



For the ground truth data, measurements are timestamped
and recorded in a text file. Simultaneously, the video feed
from the virtual camera is processed by the MediaPipe
and the resulting 2D landmarks are also timestamped and
recorded. Fig. 3 shows the graphs of the computed ROM
angles for the ground truth vs. the proposed method for vari-
ous exercises. A similar data collection method is used when
a user performs the exercises for comparing the proposed
method vs. the Kinect-based measurements and these results
are also shown in Fig. 3. To mitigate noise effects, the data
from the MediaPipe is filtered using a moving average filter
with a window length of 8, which time-shifts the data. In
post-processing, the data is time-aligned with the ground
truth and Kinect data for analysis.

III. RESULTS AND DISCUSSION
The results from the proposed method are compared to

the ground truth using the Bland-Altman test [15] to find
the limits of agreement (LOA). Fig. 3 and Table I show the
LOA for various exercises. The LOA for exercise 2 is seen
to be higher than for other exercises. This is explained by the
arm motion out of the frontal plane for exercise 2, where the
lack of depth information causes the proposed approach to
be degraded especially near the extreme angles (θ = 0◦ and
θ = 180◦). In exercise 3, a similar effect is seen at φ = 0◦,
but since the angle never reaches φ = 180◦, the LOA is lower
in this case. In exercise 4, since only the forearm moves out
of the frontal plane, the lack of depth estimation does not
degrade the corresponding ROM estimate excessively.

Fig. 3 and Table I also show the LOA between the
proposed method vs. Kinect. The LOA data has larger values
for comparison with Kinect in contrast to the ground truth.
One reason for this may be that the camera sensor suffers
from noise. Next, for exercise 1, the large LOA against
Kinect may arise from the discrepancy in the data for the
low values of shoulder elevation angles, which are normally
the resting position of the arm and may not be significant
for one’s ability to perform activities of daily living. For the
larger shoulder elevation angles, the data from the proposed
system closely follows the data from the Kinect. For exercise
2, the large value of LOA can be attributed to the discrepancy
in the data for the low and high values of shoulder elevation
angles, where the Kinect measurements may suffer due to
only small changes in depth. For exercise 3, the large value
of LOA can be attributed to data discrepancy for φ = 90◦

where the Kinect sensor suffers from occlusion of the elbow
joint. For exercise 4, the large LOA value may arise from
the moving average process used in the proposed method that
reduces the slope of the motion trajectory as the arm switches
from internal to external rotation. While this does not affect
the peak values, a reduction in the moving average window
size is found to improve the LOA. Finally, for exercise 5,
the large LOA against Kinect may be caused by the pose
prediction uncertainty from the MediaPipe and the Kinect.

IV. CONCLUSION
We proposed a ROM assessment system using a com-

mercially available DVA device with a built-in camera. The

TABLE I: Limits of agreement for shoulder (S) and elbow (E) exercises.

No. Exercise vs. Synthetic data vs. Kinect
1 S: abduction-adduction ±4.3◦ ±8.8◦

2 S: flexion-extension ±7.1◦ ±12.6◦

3 S: plane angle ±3.3◦ ±12.1◦

4 S: internal-external rotation ±4.3◦ ±15.6◦

5 E: flexion-extension ±2.9◦ ±7.2◦

built-in camera of the DVA devices creates future research
opportunities such as long-term ROM assessment and ther-
apy compliance applications related to telehealth. Our future
work will explore the possibility of training deep learning
models with the DVA-based measurements to perform ROM
assessment and determine if such a model can detect and
track changes in the ROM of an individual over time. Such
a system will be useful for elderly and it will help them
prevent or, at the very least, slow down the aging-related loss
of ROM by ensuring adherence to therapy. The healthcare
providers can also use the data provided by the system to
assign therapies tailored to specific patients, which can lead
to a more effective therapy outcome.
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