
USING UNITY FOR 3D OBJECT ORIENTATION IN A VIRTUAL

ENVIRONMENT

 Hassam Khan Wazir and Fawaz Yahya Annaz

Institut Teknologi Brunei, Department of Electrical & Electronic Engineering, Faculty of Engineering, Jalan Tungku Link,

Gadong, BE 1410, Bandar Seri Begawan, Brunei Darussalam, Email: hassamkhanwazir@yahoo.com,

fawaz.annaz@itb.edu.bn

Keywords: UAV, virtual environment, robot navigation

Abstract

Although Unmanned Aerial Vehicles (UAVs) have gained a lot

of attention by researchers in the past couple of decades, the

development of UAV safe and efficient test platforms still

needs much attention. The main reason for this being the

unstable nature of the platforms and the potential risks

associated with multi-rotor UAVs. To address and understand

the above problems, this paper introduces UAV navigation in a

virtually generated environment that is coupled to the real

hardware platform. The virtual environment (VE) is developed

using the Unity game engine, providing users with sufficient

tools to build 3 dimensional, multi-level maps. The VE parses

the orientation data (received from the hardware) and depicts

instances of a UAV inside the created VE maps. Thus, this

approach provides a suitable environment to examine different

geographical scenarios and to test control and navigation

algorithms to their limits without the need to physically

manoeuvre the UAV and risk damaging it while doing so.

1 Introduction

Virtual environments (VEs) play a very important part in

research and development by providing researchers with a way

to dynamically alter environments to test different scenarios

without the need to physically rebuild environment every time a

scenario is changed. Thus it offers flexibility, reduces cost,

eliminates crash risks, and reduces effort to develop, fly and

control UAV systems. This approach has been mainly used in

studies that are related to autonomous and remote controlled

helicopter and multi-copter tracking. The studies range from

obtaining real-time orientation and position data from the UAV

to building more accurate UAV models in order to create

learning tools and VEs for UAV platform testing and flight

training.

2 2D Versus 3D Virtual Environment

Virtually created 2D environments have been used in the past

to test navigation algorithms and examine the performance and

efficiency of various types of ground-based robots if physically

building the environment proved to be very costly or time

consuming. 2D VEs provided a reliable way to gather data,

monitor and control various types of Unmanned Ground

Vehicles (UGVs), [1], [2] and [3]. 2D-VEs do a decent job of

when UGVs are considered, provided that flat ground is

assumed, however, they are at a disadvantage when multiple

degrees of freedom visualising is considered in cases such as

articulated robots, humanoids and UAVs, where movements of

these robots can only be fully explained and visualised in a 3D

space.

Although a number of researchers in the past have created 3D-

VEs using game engines, there were major differences and

limitations related to cost and portability [4] [5] [6]. A number

of researchers nowadays are using sophisticated equipment [7]

and [8], for example, VICON Motion Capture System was used

to measure UAV orientation and position to obtain very precise

data to perform complex UAV manoeuvres and control

multiple UAVs simultaneously [9] and [10]. However, the cost

of this kind of equipment is very high and is only feasible for

very advanced research in the field of aeronautics and

autonomous control systems. In this research, the project

tackles this issue by using a low-cost, high sensitivity IMU

(attached to a UAV test-bed) to measure orientation, with the

earth acting as the inertial frame of reference. The IMU can

also be connected to the computer in the absence of the test-bed

to navigate through a 3D generated map.

Software containing 3D environment, collision detection and

complex physics is very difficult to build from the ground up

and can be overwhelming and time consuming for a small

research group. Therefore, to improve productivity and to

facilitate rapid prototyping, the VE was built using the Unity

game engine [11]. Although the idea of using commercial and

open source game engines to develop 3D simulators is not a

new and there are instances where researchers have used game

engines such as Unreal [12] [13] [14], however, those are very

few and the literature offer limited examples. This is simply

because (in the past) game engines did not possess the

necessary capabilities to create fully featured 3D simulation

software, and the ones that did were sold at very high prices. It

is only in the past decade that the price of game engines

dropped significantly, due to the rapid increase in processing

power, graphical detail and affordability of computers, which

has led to an increasing number of open source and free

versions of commercial game engines available for use.

Authorized licensed use limited to: Polytechnic Institute of New York University. Downloaded on September 13,2022 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

3 Related Work

For the purpose of the study, a suitable programing language or

an Integrated Development Environment (IDE) was required to

build a VE with specific capabilities. What follows is a

complete list of capabilities the IDE and the VE had to possess

in order to be viable for use as part of the project. The Virtual

Environment:

 creates 3D multi-level maps

 saves and loads maps from a popular text file format

 reads and parses the output data from an IMU

 uses the parsed data to interact with a virtual flying object

 implements collision detection for the virtual objects

 has an interactive Graphical User Interface (GUI)

 runs on multiple platforms (Windows, Mac OS X, Linux)

 utilises preferably open source IDE, or free proprietary

software.

Upon thorough study of the literature, it was observed that a

few game engines and several different types of robot

simulators have been used by researchers in the past to simulate

robotic movement and create VEs. All of them have pros and

cons, depending upon the type of VE being created.

There are many robot simulators available that have integrated

physics and are designed for rapid prototyping such as:

 USARSim is a high-fidelity, open source, robot simulation

software based on the open source version of Unreal

Engine 3. It is widely used in various robotics competitions

such as RoboCup rescue virtual robot competition

(RoboCup) and the IEEE Virtual Manufacturing

Automation Competition (VMAC).

 Gazebo [15] is another such 3D robotics simulator that

uses Open Dynamics Engine (ODE) as the physics engine

along with Ogre rendering engine, which is an open source

engine that provides high quality visual rendering.

 Webots [16] also uses the ODE as the physics engine with

a C/C++ and Java Application Programmer’s Interface

(API). It is commercial simulation software that is

normally used for algorithm testing and provides the option

to transport its controller programs to commercially

available real robots.

Besides open source and commercial robot simulators, a few

game engines like Unreal engine (mentioned above) and

Panda3D have previously been used to create VEs. In this

study, Panda3D and Unity were tested to decide on which one

is to be used for future developments.

Panda3D developed by Disney is an open source game engine

and a framework for 3D object rendering and game

development. Although the engine itself is developed in C++,

the intended game-development language is Python. Since it is

a 3D game engine, some of the facilities that Panda3D provides

include collision detection, fully integrated physics system,

support for I/O devices and 3D audio support. However,

Panda3D has a steep learning curve and a small developer

community, preventing rapid development and prototyping.

The documentation related to its API is also not complete,

making it difficult for beginners to fully understand and utilize

the tools that Panda3D provides for the development of the VE.

Start
Environment

Create a new
map?

Go to Build
Menu

Save File Load a
Save File

Edit the map?

Create/Edit
map

Save the map?
Save the
map to a
Save File

Save File

Go to
Options
Menu

Set COM
Port

Yes

Yes

Yes

No

No

No

Go to
Navigation

Screen?
1Yes

No

Quit
Environment

Open Map
Creation
Screen

2

Start
Navigation?

1

Go to
Navigation

Screen

Start IMU
datastream

Navigate

Stop IMU
datastream

2

Figure 1. System architecture of the virtual environment

Authorized licensed use limited to: Polytechnic Institute of New York University. Downloaded on September 13,2022 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

Thorough testing of both game engines reveals that Panda3D

surpassed Unity in terms of the cost benefit, as it is an open

source game engine. In all other aspects related to

documentation, developer community, and user-friendliness,

Unity was found to be far more flexible and easy to use.

Besides, the free version of Unity provided all the necessary

tools required to make quality software without any added cost.

The existence of a huge community on the internet also helped

in reducing the learning curve and resulted in rapid progress in

software development. Therefore, Unity was chosen as the

game engine to be used for the project.

4 System Architecture

Figure 1 shows the complete system architecture. The novelty

of the research required the development of a system

architecture that enabled VE development with hardware

integration. The VE design was divided into the following

parts:

 Graphical User Interface (GUI)

 Creating and Destroying Objects

 Save/Load SystemGraphical User Interface (GUI): A

minimalistic approach was used while designing the GUI,

with primary and secondary menus. The primary menu has

six primary controls namely Build, Options, Save, Load,

Navigate, and Quit. Placing mouse over the Build or

Options button opens up their respective secondary menus

that deal with map building and software settings

respectively.

Creating and Destroying Objects: At a very basic level, the

main objective of the VE is to create and destroy objects

(henceforth termed as “cubes”) when the user clicks the

appropriate mouse button. A single cube acts as a brick, and

thus, multiple bricks can be stacked on top of each other to

build a column. Similarly, multiple columns can be placed side-

by-side to create a wall. Thus, using this simple strategy, an

environment can be built to represent almost any map or lower

resolution approximations. These maps are known as “Voxel”

maps, and the software created to build these maps is termed as

a “Voxel Engine”.

The term “Voxel” is a combination of the word “volume” and

“pixel”. A pixel is the smallest unit in a 2D screen and every

image displayed on the screen is a combination of different

pixels. Similarly, the cube is the smallest unit in a Voxel

Engine and the entire map is created using a combination of

these cubes. So, the cubes can be thought of as the pixels of the

Voxel Engine, and since these cubes have volume, they are

termed as Voxels.

Maps created in a Voxel Engine are an easy and effective way

of testing a simulation if very high environmental detail is not a

priority. In this way, a basic map can be efficiently constructed

in a very short time, which makes it ideal for rapid prototyping.

There are three types of cubes used in the VE, namely, Wall

Cube, Floor Cube and Gap. Although these cubes serve as

Voxels, they are named “cubes”, and in reality they are cuboid

in shape of a “cube.

Table 1. GUI description

Icon Description

Open Build menu

Select Grid Size

Place a Wall cube on left click

Place a Floor and Gap cube on left

and right mouse click respectively

Open Options menu

Set COM Port number

Save the created map

Load previously created map

Go to Navigate screen

Connect hardware with VE

Go Back to map creation screen

Exit VE

The Wall Cube is a single, opaque element that can be used to

construct walls inside the VE and has the dimensions 1x1x1

unit3. It can be placed on top of or beside another object and

can be deleted if need arises. For convenience, clicking on the

floor creates a column that consists of 3 Wall Cubes instead of

instantiating a single cube. In this way, time can be saved by

reducing the number of clicks when building a map. However,

clicking on a Wall Cube instead of the floor will result in the

instantiation of a single Wall Cube at that point. This gives the

Authorized licensed use limited to: Polytechnic Institute of New York University. Downloaded on September 13,2022 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

user more freedom in customizing the map as the user can vary

the height of the wall at different locations or create tall

structures with wide openings inside the walls etc.

Figure 2. A 3D map created inside the VE

Figure 3. The basic building blocks of the VE

Figure 4. Interaction of the cubes with each other

The Floor Cube and Gap Cube are, basically, different sides of

the same coin. The Floor Cube is a single semi-transparent

element that can be used to construct floors and has the

dimensions 1x0.2x1 unit3. A Floor can only be constructed as

an entire unit instead of placing individual cubes side by side

which means that an entire floor will be instantiated on a single

mouse click.

As for the Gap Cube, as the name suggests, it is used to create a

gap in the floor which serves as a gateway between two

adjacent floors. It has the same dimension as the Floor Cube

and is also semi-transparent. The only difference is that the Gap

Cube has a different colour as compared to the Floor Cube and

does not have a collider attached to it. This means that objects

can pass through it as if the Gap Cube never existed. The

reason for creating a gap cube instead of leaving the opening

empty was to make it convenient for the user to identify an

opening in the ceiling or on the floor and thus, make navigation

through the map much easier. Every cube instantiated is also

made as a child object of another object called “Cube

Container”.

Save/Load System: There are many different ways in which

information can be saved to and loaded from a file and all of

them are highly dependent on the nature of the software being

developed. Here, the aim was to create a file saving and loading

system that is lightweight and can be modified in any text

editor. Moreover, the file format should also be both human

and machine readable, to make it convenient for other students

working on the project to modify it and work with it.

For this reason, the XML (Extensible Markup Language) was

chosen as a default Save/Load file format. The format defines a

set of rules for encoding documents in a format that is both

human and machine-readable. The Unity Engine has its own

built-in XML serializer that can be used to serialize information

to and from an XML file. The Save/Load functionality saves

information related to the present state of the environment by

encoding it in XML format before saving it to a text file. This

can later be retrieved and decoded back into the original data.

An example of the XML encoded information is as follows:

<?xml version="1.0" encoding="utf-8"?>

<BuildingInfo

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <cubeList>

 <CubeInfo>

 <prefabName>Floor</prefabName>

 <position>

 <x>0</x>

 <y>0</y>

 <z>0</z>

 </position>

 </CubeInfo>

 <CubeInfo>

 <prefabName>Wall</prefabName>

 <position>

 <x>1</x>

 <y>0</y>

 <z>0</z>

 </position>

 </CubeInfo>

Authorized licensed use limited to: Polytechnic Institute of New York University. Downloaded on September 13,2022 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

Save/Load works by iterating through all of the objects inside

the “Cube Container” and stores them inside a List. The name

and position (x,y,z) in 3D space of each object stored in the List

are, then, retrieved and the data converted into XML format

which is eventually saved into a “.XML” text file. To load the

cubes back again, the .XML file is decoded and the cubes are

instantiated, based on the coordinates written in the text file

along with their names.

5 Hardware Integration

The hardware that is integrated with the VE consists of an

Inertial Measurement Unit (IMU) to sense the orientation of an

object it is attached to with respect to the earth as an inertial

frame of reference; a microcontroller to retrieve the orientation

data from the IMU and process it; and a pair of XBee modules

to wirelessly transmit orientation data from the microcontroller

to the Laptop, where the data is parsed by the VE. Figure 5 is a

picture of the hardware design, with the Arduino in this case is

only used to supply power to the IMU and the XBee modules

[17].

Figure 5. The final hardware design

6 Multiplatform Testing

The VE was exported as a standalone multiplatform application

that is functional in Windows, Mac OS X and Linux

environments. The integrated VE and hardware was tested on

all operating systems, where hardware manoeuvres were

reflected in the VE, as shown in Figure 6.

7 Conclusion

This paper presents the development of real-time UAV

navigation inside a VE. The paper mainly focused on the VE

system architecture and the different associated developed

mechanisms that makes it a powerful tool for UAV movement

tracking.

The GUI was minimalistic and was specifically designed to

provide more flexibility for the user. The save/load

functionality was integrated into the VE to save time, keep

record and improve efficiency. The voxel approach to the VE

ensured a light smooth run on low-end computers.

The VE has proven to be simple, yet very robust and can be

deployed on multiple platforms, thus benefiting users and

eliminating compatibility issues for various types of UAVs.

Figure 6. Navigation inside the VE

References

[1] F. Y. Annaz, “A Mobile Robot Solving a Virtual Maze

Environment”, International Journal of Electronics,

Computer and Communications Technologies, IJECCT,

Vol. 2, No. 2, pp. 1-7, Jan 2012.

[2] F. Y. Annaz, “Real Time Robot Navigation in Virtually

Created Environments”, International Journal of

Electronics, Computer and Communications Technologies,

IJECCT, Vol. 3, No. 4, pp. 7-13, Jul 2013.

[3] F. Y. Annaz, “Path-Whispering in a Virtual Environment",

International Review of Mechanical Engineering

(IREME), Vol. 5, No. 5, 2011.

[4] J. Faust, C. Simon and W. D. Smart, “A Video Game-

Based Mobile Robot Simulation”, Proceedings of the

IEEE/RSJ International Conference on Robots and

Systems (IROS 2006), 2006.

[5] J. Craighead, J. Burke and R. Murphy, “Using the Unity

Game Engine to Develop SARGE: A Case Study”,

Proceedings of the 2008 Simulation Workshop at the

International Conference on Intelligent Robots and

Systems (IROS 2008), 2008.

[6] U. H. Hernandez-Belmonte, V. Ayala-Ramirez and R. E.

Sanchez-Yanez, “A Mobile Robot Simulator Using a

Game Development Engine”, Proceedings of the

ROboticS SUmmer Meeting ROSSUM 2011, Xalapa,

Authorized licensed use limited to: Polytechnic Institute of New York University. Downloaded on September 13,2022 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

Veracruz, Mexico, 2011.

[7] R. Cory and R. Tedrake, “Experiments in fixed-wing UAV

perching”, Proceedings of the AIAA Guidance,

Navigation, and Control Conference, 2008.

[8] D. Mellinger, N. Michael and V. Kumar, “Trajectory

generation and control for precise aggressive maneuvers

with quadrotors”, The International Journal of Robotics

Research 2012, Vol. 31, No. 5, pp. 664-674, 2012.

[9] “VICON Motion Capture System”, VICON Motion

Systems Ltd.

http://www.vicon.com/Application/Engineering.

[10] N. Michael, D. Mellinger, Q. Lindsey and V. Kumar, “The

GRASP Multiple Micro-UAV Testbed”, Robotics &

Automation Magazine, IEEE , Vol. 17, No.3, pp. pp.56-65,

September 2010.

[11] “Unity Game Engine”, Unity Technologies, [Online].

https://unity3d.com/. [Accessed 07 May 2014].

[12] “Unreal Engine Technology”, Epic Games, [Online].

Available: https://www.unrealengine.com/. [Accessed 07

May 2014].

[13] S. Balakirsky, C. Scrapper, S. Carpin and M. Lewis,

“USARSim: providing a framework for multi-robot

performance evaluation”, Proceedings of the 6th

Performance Metrics for Intelligent Systems (PerMIS),

2006.

[14] S. Carpin, M. Lewis, J. Wang, S. Balakirsky and C.

Scrapper, “Usarsim: a robot simulator for research and

education”, Proceedings of the IEEE 2007 International

Conference on Robotics and Automation, 2007.

[15] “Gazebo”, Open Source Robotics Foundation (OSRF),

[Online]. Available: http://gazebosim.org/. [Accessed 31

May 2014].

[16] “Webots”, Cyberbotics, [Online].

http://www.cyberbotics.com/. [Accessed 31 May 2014].

[17] F. Y. Annaz and H. K. Wazir, “Hardware-Virtual

Environment Integration”, BICET 2014, Brunei

Darussalam, 2014.

Authorized licensed use limited to: Polytechnic Institute of New York University. Downloaded on September 13,2022 at 23:31:45 UTC from IEEE Xplore. Restrictions apply.

